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Abstract. Turbulence in helium II manifests itself as a disordered tangle of quantized vortex
lines. The study of this form of disorder near absolute zero began with Vinen’s heat-transfer
experiments in the mid-1950s and is still a fertile ground of investigation. This article reviews the
recent developments, which show surprising similarities between helium II turbulence and classical
turbulence, and points to new directions of research.

1. Introduction and background

The study of quantized vortex lines in the turbulent flow in helium II was pioneered by Joe
Vinen with a remarkable series of experiments in the mid-1950s (Vinen 1957a, b, c, d). More
than forty years later this problem is still a fruitful area of investigation. New issues are
being addressed as regards the relation between traditional, classical turbulence and quantum
turbulence in helium II, and the nature of the disorder and dissipation at temperatures near
absolute zero. The aim of this paper is to review the current work, point to new directions
of investigations and stress the surprising similarities which are emerging between quantum
turbulence and classical turbulence.

On the experimental side, the current activity includes the work done by Donnelly’s group
at the University of Oregon (Smithet al 1993), by McClintock’s group at the University of
Lancaster (Hendryet al 1994) and by Tabeling’s group at the ENS Paris (Belinet al 1996,
Maurer and Tabeling 1998). On the theoretical side, there are attempts to tackle the problem
using either the vortex dynamics simulation approach (Barenghiet al 1997), or tools such as
the condensate model (Noreet al 1997) which go beyond the traditional context of Landau’s
two-fluid hydrodynamics. The renewed interest in the problem was highlighted by the recent
workshop onSuperfluid Turbulence and Cryogenics Probesheld at the University of Oregon
in June 1998.

Landau’s two-fluid theory provides the basic picture for studying the hydrodynamics of
helium II. Landau’s theory models helium II as an intimate mixture of two fluid components,
the normal fluid and the superfluid. The superfluid is related to the quantum ground state,
has densityρs and velocityvs , and flows without any friction. The normal fluid is related to
the thermal excitations (phonons and rotons), has densityρn and velocityvn, and carries the
entropyS and viscosityη of the entire liquid. The total density of helium II isρ = ρs + ρn.
The relative proportion of normal fluid and superfluid depends on the absolute temperatureT .
At T = 0, helium II is entirely superfluid (ρs/ρ = 1). If we increaseT , the relative proportion
of superfluid decreases, until, at the temperature of the lambda transition (T = Tλ = 2.17 K
at saturated vapour pressure), helium II becomes entirely ‘normal’ (ρn/ρ = 1) and we are left
with helium I, which is a classical, ordinary fluid.
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Although it is the ability to flow without any friction which gives the superfluid its name,
it is the appearance of dissipation in the form of superfluid vortex lines which makes the flow
of helium II so interesting (Donnelly 1991a). The two most important physical features of
vortex lines—the quantization of the circulation and the mutual friction—are both associated
with the work of Vinen (1957a, b, c, d, 1961). The quantization of the circulation is expressed
by the condition∫

C
vs · dl = 0 (1)

whereC is a path around the vortex core,0 = h/m = 9.97× 10−4 cm2 s−1 is the quantum of
circulation,h is Planck’s constant andm is the mass of the helium atom. The mutual friction
is a force which couples the normal-fluid and the superfluid components, and arises because
the vortex lines scatter the phonons and rotons which constitute the normal fluid (Samuels and
Donnelly 1990).

There are many ways to produce vortex lines. Vortex lines appear, for example, when
a container filled with helium II is set into rotation. In this case the vortex configuration is
ordered: the vortices align along the axis of rotation and the flow of helium II is laminar. There
are also situations in which the vortices form a disordered, turbulenttangle: in this case we
havequantum turbulence, also calledsuperfluid turbulencein the literature.

Following Vinen’s initial work, the early studies of the vortex tangle were carried out in
a flow configuration related to heat transfer calledcounterflow, in which an opposite motion
of superfluid and normal fluid is generated by an applied heat flux. Counterflow has no direct
analogy in classical fluid mechanics, but is important in engineering applications when helium
II is used as a coolant. The most recent work on the vortex tangle is more concerned with
turbulent flows studied in classical fluid dynamics: in these flows turbulence is created by
moving grids, propellers or blades. To stress the difference from counterflow, these more
classical flows are referred to ascoflows.

2. Counterflow turbulence

Counterflow is important because it is the prototype of heat transfer and is associated with
engineering applications. Consider a channel which is closed at one end and is open to the
helium bath at the other end. At the closed end a resistor dissipates a known heat fluxW . In an
ordinary fluid, provided that one is careful to prevent convective motion, heat is transferred from
one end to the other by thermal conduction; the heat fluxW is proportional to the temperature
gradient∇T and there is a well defined thermal conductivityk at smallW ,W = k∇T . The
situation is very different in helium II: here the heat is carried by the normal fluid away from
the heater,W = ρST vn, whereS is the entropy per unit mass. Because of the closed end,
the mass fluxj = ρsvs + ρnvn is zero and some superfluid must flow towards the heater to
conserve mass,vs = −(ρn/ρs)vn. In this way a relativecounterflowvelocityV = |vn − vs |
between the normal fluid and the superfluid is set up which is proportional to the applied heat
flux W , V = W/(ρsST ).

Vinen discovered that if the heat fluxW is increased, the relative motion of normal fluid
and superfluid becomes stronger until a critical velocityVc1 is reached (Vinen 1957a, b, c,
d). At this point the perfect ability of helium II to transfer heat breaks down: a vortex tangle
appears and introduces dissipation. The tangle, which is usually observed by measuring the
attenuation of second sound, can be characterized by its line densityL0, which is the length
of vortex line per unit volume. Vinen’s measurements showed that forV > Vc1 the relation
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betweenL0 andV 2 is linear:

L0 ≈ γV 2 (2)

whereγ is a temperature-dependent parameter. Geometrically,L
−1/2
0 represents the average

spacing between the vortices in the tangle. Vinen also derived a simple phenomenological
equation forL0 which yields (2) as solution, although the numerical value of the parameterγ

was left undetermined.
On the theoretical side the numerical simulations of Schwarz (1982, 1985, 1988) shed

much light onto the problem. After assuming for simplicity thatV = |vn − vs | is a constant,
Schwarz showed that, provided thatV > Vc1, a self-sustaining vortex tangle driven byV
follows from the simple rules of vortex dynamics. The calculation also yielded the quantityγ

without any adjustable parameters.
Following Vinen’s work, a great number of experiments were performed by other

investigators, above all by Brewer and Edwards (1962), van Beelen and co-workers
(e.g. Slegtenhorstet al 1981), Donnelly and co-workers (e.g. Barenghiet al 1982, Swanson
et al 1983, Donnelly 1993) and Tough and co-workers (e.g. Ladneret al 1976). A major
difficulty soon arose becauseγ seemed to vary greatly from experiment to experiment. A very
detailed analysis of all of the data available was carried out by Tough (1987), who discovered
the existence of separate turbulent states characterized by different values ofγ . Tough found
that in channels of circular or almost square cross section at increasing values ofV > Vc1,
there is first a regime of moderate vortex line density, which he called theT-1 turbulent state. If
V = Vc2, whereVc2 is a second critical velocity, the vortex line densityL0 becomes suddenly
larger (Martin and Tough 1983); the new regime forV > Vc2 was called theT-2 turbulent state
by Tough. The lower-density state, T-1, is absent in high-aspect-ratio (rectangular) channels
like Vinen’s, in which the line density has the same value as in the T-2 state. The value ofγ

in the T-2 state corresponds to what was found numerically by Schwarz.
For many years the nature of the two turbulent states and the physical meaning of the

transition atV = Vc2 in circular channels have been a mystery. The puzzle was solved
recently by Melotte and Barenghi (1998), who addressed for the first time the issue of the
velocity profile of the normal fluid and its stability. They started with the observation that the
normal fluid must obey the same no-slip boundary conditions as a classical fluid. Hence, for
V < Vc1 in the laminar counterflow regime (before the tangle appears), the profile of the normal
fluid is vn = V0(1− r2)ẑ like classical Poiseuille pipe flow, wherer is the radial variable,V0

is some constant proportional to the applied heat fluxW andẑ is the unit vector in the axial
direction along the channel. Melotte and Barenghi then argued that forVc1 < V < Vc2, in the
weak T-1 turbulent regime, the normal fluid is still laminar, the parabolic profile being only
mildly flattened near the centre of the channel by the mutual friction between the normal fluid
and the vortex tangle of densityL0. Finally they computed the stability ofvn with respect to
infinitesimal perturbations of the form eikz+imφ whereφ is the azimuthal angle, andk andm are
respectively the axial and azimuthal wavenumber. The calculation showed that ifL0 is large
enough, thenvn becomes unstable. The computed critical velocities agree very well with the
observations of the T-1–T-2 transition in the ranges of temperature and channel size observed.
Because of the mathematical similarity between their calculation and the classical problem of
Osborne Reynolds of the stability of pipe flow, Melotte and Barenghi argued that the T-1–T-
2 transition corresponds to the transition to turbulence of the normal fluid. This conjecture
is reinforced by the observation that in their calculation a very wide range of wavenumbers
become excited just above the computed instability: this suggests that the flow which emerges
from the instability has a great spatial complexity, and hence is likely to be turbulent.

The picture which appears from this work is thus the following: in the T-1 state (V < Vc1)
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the superfluid is turbulent (there is a vortex tangle) but the normal fluid is still laminar; in
the T-2 state the normal fluid becomes turbulent too—hence the increased dissipation and
higher vortex line density. This scenario is consistent with the agreement between Schwarz’s
calculation and the measurements for the T-2 state: oncevn is turbulent, it can be approximated
fairly well by a time-averaged, uniform profile, which is the assumption originally made for
simplicity by Schwarz.

3. Coflow turbulence

Unlike counterflow turbulence, coflow turbulence in helium II has a direct analogy with
classical turbulence. In classical fluid mechanics the turbulence intensity is measured by
the Reynolds number, Re = UL/ν, whereU andL are length scales andν = η/ρ is the
kinematic viscosity. Recent experiments show that at high Reynolds numbers the turbulent
coflow motion of helium II is very similar to classical turbulence. The evidence is robust. The
experiments are the following.

• Mass flow rates and pressure drops along pipes atRe ≈ 106 can be well described by
using the classical relations for high-Reynolds-number classical flows (Walstromet al
1988).
• Experiments on large-scale turbulent vortex rings atRe ≈ 4× 104 detected normal-fluid

vorticity and superfluid vorticity moving together as a single structure (Borneret al1983,
Borner and Schmidt 1985).
• Experiments on turbulent Taylor–Couette flow between concentric rotating cylinders at
Re ≈ 4× 103 showed the typical structures of classical turbulent Taylor–Couette flow
(Bielert and Stamm 1993).
• Experiments on the decay of superfluid vorticity created by towing a grid in a sample

initially at rest showed that the vorticity decays in time according to the same laws as of
the decay of classical turbulence (Smithet al 1993). More surprising, the decay appears
independently of temperature, fromTλ down to the lowest temperature measured, 1.4 K
(Stalp 1998a, b).
• Experiments on turbulence created by rotating blades by Maurer and Tabeling (1998)

showed the same Kolmogorovk−5/3-energy spectrum of classical turbulence for both
helium I and helium II, at temperature as low asT = 1.4 K.

The lack of temperature dependence of the last two experiments is remarkable: the normal
fluid alone cannot be held responsible for helium’s classical behaviour atT = 1.4 K: at this
temperatureρn/ρ is only 7% and one expects the normal fluid to be dynamically unimportant.

The classical behaviour of turbulent helium II is at first surprising, because we are
historically accustomed to the idea that the flow of helium II is very different from the flow of
a classical fluid: traditional examples are second sound, thermal counterflow, superleaks, etc.
Even the more complex vortex flows which have been studied recently, such as Couette flow,
confirm the non-classical motion of helium II (Barenghi 1992, Hendersonet al1995, Barenghi
1997, Henderson and Barenghi 1998). But all of these flows (with and without vortices) refer
to laminar flows at rather low Reynolds numbers: the key distinction which must be made is
thus betweenlaminarandturbulentflows of helium II.

To explain the observations it has been suggested (Donnelly 1991b) that in the turbulent
regime, when there is a large density of vortex lines, the superfluid and the normal fluidlock
togetherand helium II behaves classically like a single fluid of densityρ, a concept referred
to asvortex-coupled superfluidity.
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An important observation as regards understanding vortex-coupled superfluidity was first
made by Samuels (1993), namely that vorticity in the normal fluid has a significant effect on
the quantized vortex lines. To pursue this idea, one must follow the vortex dynamics method
pioneered by Schwarz (1982, 1985, 1988) to study the vortex tangle of counterflow turbulence.
The method is the following. An arbitrary configuration of vortex lines is discretized into a
numberN of points, and the position of each point is integrated over time using the equation

ds

dt
= vi + αs′ × (vn − vi ). (3)

Heres = s(t, ξ) is the position of a vortex point,ξ is the arc length,t is the time, a prime denotes
differentiation with respect toξ ,α = ρnB/(2ρ),B is the known temperature-dependent mutual
friction coefficient (Barenghiet al 1983) and the self-induced velocityvi is determined by the
Biot–Savart integral

vi (s) = 0

4π

∫
V

(z − s)× dz

|z − s|3 (4)

which must extend over the entire vortex configuration in the volumeV. Note that in writing
(3) the small transverse part of the mutual friction has been neglected. The computer code
which performs this calculation must allow for a variable numberN of points (more points are
required if a kink develops along a vortex line) and for vortex reconnections, whose existence
was demonstrated by Koplik and Levine (1993) using the condensate model (see section 3).

To investigate the possibility that the two fluids lock together, Barenghiet al (1997)
performed the following numerical simulation, which generalizes the early work of Samuels
(1993). They started with the observation that in the experiments under consideration the
Reynolds number is so high that the normal fluid must be turbulent. It is known from the
numerical simulations of classical turbulence (Sheet al 1990, Vincent and Meneguzzi 1994,
Siggia 1981, Kerr 1985) and from experiments (Douadyet al 1991) that turbulence is not
a uniform randomness: regions of intense, concentrated vorticity calledvortex tubesappear
spontaneously in the flow, move about and disappear after a certain lifetime. Therefore vortex
tubes must be present in the turbulent normal fluid. To model these structures, Barenghiet al
chose an Arnold–Beltrami–Childress (ABC) flowvn = (un, vn, wn), whose components in
Cartesian coordinates are given by

un = A sin(2πz/λ) +C cos(2πy/λ) (5)

vn = B sin(2πx/λ) +A cos(2πz/λ) (6)

wn = C sin(2πy/λ) +B cos(2πx/λ). (7)

Hereλ is a length scale andA, B andC are parameters. ABC flows (Dombreet al 1986) are
a convenient way to model regions of concentrated vorticity and provide a one-scale model
of normal-fluid turbulence. They are solutions of the steady Euler equation and of the time-
dependent, forced Navier–Stokes equation. Despite the apparent simplicity, their streamlines
have a complex Lagrangian pattern which includes chaotic particle paths at certain values of
the parameters. ABC flows have also been used to study turbulent processes of dynamo action
in magneto-hydrodynamics (Gilbert and Childress 1995, Galloway and Proctor 1992). Finally,
ABC flows have non-zero helicity (Moffatt 1969), a property which has been associated with
turbulence structures both in experiments and numerical simulations (Moffatt and Tsinober
1992, Kitet al 1987).

The numerical simulation of Barenghiet al calculated the time evolution of an arbitrary
initial configuration of superfluid vortex lines in the presence of a driving ABC flow. The
calculation was performed inside a three-dimensional periodic box of sizeλ. Typically the
calculation started with an initial vortex ring. Under the influence of the normal flow, the ring
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became unstable and distorted, the total length of vortex line increased and a vortex tangle
developed. But the vortex tangle was very different from the almost isotropic and homogeneous
tangle obtained by Schwarz (1982, 1985, 1988) in counterflow turbulence. Barenghiet alfound
that bundles of superfluid vortex lines were created and concentrated in the regions where the
vorticity of the normal fluid is high. The physical mechanism behind the creation of these
bundles is the instability of a superfluid helical vortex wave in the presence of normal flow
parallel to the line (Ostermeier and Glaberson 1975). As vortex waves become unstable and
grow, more line length is created, hence more vortex loops exhibit the same instability, and
so on, until non-linear effects (the Biot–Savart law and reconnections) saturate the growth.
Although themicroscopicsuperfluid velocity pattern in the bundles is very complicated,
its macroscopicaverage over a region larger than the intervortex separation is found to be
similar to the vorticity field of the normal fluid. Thisvorticity matchingis consistent with the
observations. Numerical investigation of the growth timescale for the vortex bundles showed
that it is of the same order as the ABC flow timescale; since the lifetime of the vortex tubes
observed in turbulence is of the order of few turnover times, one concludes that there is enough
time for the vorticity-matching process to take place.

The ABC model is clearly too simple for use in making a direct quantitative comparison
with the experiments, but it confirms the locking mechanism which has been postulated to
explain the observations and provides a physical explanation for this mechanism.

4. Turbulence at absolute zero

The experiments described above motivated Noreet al (1997) to perform a calculation based
on the Gross–Pitaevskii equation for a Bose–Einstein condensate. This is a simplified model
of superfluidity atT = 0 which naturally yields vortex lines and vortex reconnections (Koplik
and Levine 1993). The governing equation is the non-linear Schrödinger equation

i h̄
∂ψ

∂t
= − h̄

2

2m
∇2ψ − µψ +Uψ |ψ |2 (8)

whereψ is the condensate’s wave function,µ is the chemical potential andU is the strength
of the delta-function repulsion interaction between the bosons. Noreet al took as an initial
condition a convenient Taylor–Green vortex flow and computed the time evolution of the vortex
tangle. Expressed as a velocityvs = (us, vs, ws) via a Madelung transformation, this initial
condition is

us = sin(x) cos(y) cos(z) (9)

vs = − cos(x) sin(y) cos(z) (10)

ws = 0. (11)

Physically, the Taylor–Green vortex is related to the flow between two counter-rotating disks.
Noreet al found that the energy spectrum of the kinetic energy of the tangle is consistent with
the classical Kolmogorovk−5/3-law, in agreement with the experimental finding of Tabeling.
The appearance of Kolmogorov’s law shows that there is great similarity in the way the energy
is transferred from large scales (small wavenumbersk) to small scales (large wavenumbers
k) in the two problems of classical turbulence and turbulence of a Bose–Einstein condensate,
which are at first sight unrelated. Noreet al also found that the incompressible kinetic energy
of the decaying vortex tangle is converted into sound waves. This observation is consistent
with an early calculation of Jones and Roberts (1982) concerning the fate of a shrinking vortex
ring. In the case of zero-temperature turbulence, the generation of sound is important because
it is the only mechanism to dissipate kinetic energy.
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It must be noticed that one does not need to reachT = 0 for the Gross–Pitaevskii equation
to be a valid model of superfluidity: because of the strong temperature dependence ofρn and
ρs , at aboutT = 0.6 K there is already virtually no normal fluid left, and helium II is almost
entirely a pure superfluid. Moreover, at this temperature the contribution of the rotons to the
energy spectrum becomes less important than the phonons’: this is important for the validity of
the condensate model, as the spectrum of the Gross–Pitaevskii equation does not have a roton
minimum. From this point of view, therefore, the experiment just started by McClintock’s
group at the University of Lancaster is an interesting development: the aim of the experiment
is to generate a turbulent vortex tangle by oscillating a grid at temperatures of about 70 mK.
Although there are no results yet, this experiment is in the low-temperature limit for which
the model of Noreet al (1997) applies, and adds to the number of experiments currently in
progress to study the turbulence of helium II.

A difficulty with low-temperature turbulence experiments is that the usual second-sound
technique used to detect vortex lines does not work. Traditionally, the only technique still
available consists in detecting ions trapped by the vortex lines. Recently Samuels and Barenghi
(1998) have pointed out that at these low temperatures one could use thermometers to detect
the vortices, as their kinetic energy is transformed into sound, and hence into phonons and
heat.

5. Discussion and forward look

It is apparent from this selected review of the study of helium II turbulence, as it has developed
from the pioneering work of Vinen until now, that this topic, traditionally studied by the
condensed matter physicists, now has many important points in common with the classical
turbulence studied by fluid dynamicists and applied mathematicians.

Because of the quantization of the circulation and the smallness of the vortex core
(≈10−8 cm), quantized vortex lines in helium II are Nature’s best realizations of the vortex
filaments of an Euler fluid, which have been studied by fluid dynamicists and applied
mathematicians since the times of Lord Kelvin. From this point of view, a turbulent tangle
of vortex lines in helium II is an idealized but mathematically well defined toy model of
turbulence. In classical turbulence the eddies can have a huge range of size and strength, while
the superfluid eddies (the vortex lines) have the same strength, due to the quantization of the
circulation. For example, vortex tangles are an ideal ground on which to test ideas about the
topological complexity of turbulent flows. The reason for this is that vortex lines in helium
II are always geometrically well defined, unlike what happens in the numerical calculations
of classical turbulence, in which the numerical noise of regions of weak vorticity limits the
definition of vortex lines. Topological fluid dynamics (Moffatt 1969, Ricca and Berger 1996)
is a growing research area—see the recent work of Riccaet al(1998) on vortex knots. This new
interest has been highlighted by the decision of the Isaac Newton Institute for Mathematical
Sciences in Cambridge to devote an entire semester to this topic in the year 2000.

The more outstanding link between quantum and classical turbulence is the recent
discovery that, unlike what happens at small Reynolds numbers, the high-Reynolds-number
turbulent motion of helium II is similar to classical turbulence. The experimental evidence
is robust, and appears to be independent of temperature within the range explored. Clearly
much work is needed, both theoretically and experimentally, to find the limits of validity of this
observation in terms of temperatures, vorticity intensity, timescales and length scales. If the
limits are large, then the fascinating possibility is raised of probing turbulent vorticity using
second sound when studying issues of classical turbulence. In classical fluid dynamics, in fact,
one can measure the velocity well (for example using the Doppler technique) but it is difficult
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to reconstruct the vorticity, which is the quantity more of interest when studying turbulence;
for helium II, on the contrary, second sound detects the vorticity directly.

From a theoretical point of view, it is clear that much more attention must be paid to the
normal fluid. The calculations of Samuels (1993) and of Barenghiet al (1997) give strong
support to the idea of vorticity matching and provide a physical mechanism, but they suffer
from an important limitation: there is no back-reaction of the vortex tangle onto the normal
fluid—that is to say,vn is fixeda priori. The same limitation appears in all other calculations
which made use of the vortex dynamics approach: they all determined the vortex tangle as a
function of an assignedvn, either constant (Schwarz 1982, 1985, 1988), or Poiseuille (Samuels
1992, Aarts and deWaele 1994) or a single vortex (Samuels 1993) or ABC flow (Barenghiet al
1997). Essentially, all of these calculations were onlykinematic. What is necessary is a
newdynamically self-consistentcalculation, in which the normal fluid, forced by the mutual
friction, evolves self-consistently alongside the vortex tangle. Only a self-consistent approach
will clarify issues such as the validity and the range of the phenomenon of vorticity matching,
in which the two fluids are so strongly coupled by mutual friction that helium II behaves
like a single fluid of densityρ. This is a non-trivial computational task, however, because it
combines the difficulty of the numerical calculations of classical turbulence with the vortex
tangle calculation, both in three dimensions.

Finally, the (experimental) observation of the classical Kolmogorov spectrum for helium
II at the temperatures observed, fromTλ down to 1.4 K, and the (theoretical) observation of the
same spectrum in turbulence atT = 0 clearly raises issues about the meaning and generality
of thek−5/3-law. Why is quantum turbulence so classical? Attempts to answer this question
will surely shed more light on the nature of classical turbulence too.
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